	lay be used in combination with a calorimeter to compare the specific heats of two substances
0	A. Thermometer
0	B. Conductivity tester
0	C. Salt bridge
0	D. Buret
	E. Graduated cylinder sused to measure the volume of a solid by water displacement
0	A. Thermometer
0	B. Conductivity tester
0	C. Salt bridge
0	D. Buret
	E. Graduated cylinder Iseful for adding small quantities of acid into a base
0	A. Thermometer
0	B. Conductivity tester
0	C. Salt bridge
0	D. Buret
4. C	E. Graduated cylinder completes the circuit of an electrochemical cell
О	A. Thermometer
0	B. Conductivity tester
0	C. Salt bridge
0	D. Buret
○ 5. A	E. Graduated cylinder Iways amphoteric in nature
0	A. Nucleic acids
0	B. Proteins
0	C. Carbohydrates
0	D. Lipids
○ 6. F	E. Electrolytes ound as both straight-chained and branched polymers
0	A. Nucleic acids
0	B. Proteins
0	C. Carbohydrates

\circ	D. Lipids
0	E. Electrolytes
7. D	Deoxyribose in DNA nucleotides belongs to this family of biologically important molecules
0	A. Nucleic acids
0	B. Proteins
0	C. Carbohydrates
0	D. Lipids
_	E. Electrolytes Iways ionic in nature
0	A. Nucleic acids
0	B. Proteins
0	C. Carbohydrates
0	D. Lipids
О 9. Т	E. Electrolytes end not to be water soluble, and aggregate into droplets or molecular bilayers
0	A. Nucleic acids
0	B. Proteins
0	C. Carbohydrates
0	D. Lipids
0	E. Electrolytes
10.	Represents the decomposition of a compound into its constituent elements
	A. $Ag^+ + Br^- \rightarrow AgBr$ B. ${}^{14}C \rightarrow {}^{14}N + {}^{0}e$
0	$C_{0.92}^{234}U \rightarrow {}^{230}_{90}Th + {}^{4}_{2}He$
0	$D_{0.} + {}^{30}_{15}P \rightarrow {}^{30}_{14}Si + {}^{0}_{1}e$
0	E. $2HgO \rightarrow 2Hg + O_2$
_	Represents alpha decay
0	A. $Ag^+ + Br^- \rightarrow AgBr$
	B. ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{1}\text{e}$
	C. ${}^{234}_{92}U \rightarrow {}^{230}_{90}Th + {}^{4}_{2}He$
	$D. + {}^{30}_{15}P \rightarrow {}^{30}_{14}Si + {}^{0}_{1}e$
0 12.	E. $2HgO \rightarrow 2Hg + O_2$ Represents an oxidation-reduction reaction

$$\begin{array}{c} C \\ A. Ag^+ + Br^- \rightarrow AgBr \end{array}$$

$$O_{B, 6}^{14}C \rightarrow {}^{14}N + {}^{0}e$$

$$O_{D_1+15}^{30}P \rightarrow {}_{14}^{30}Si + {}_{1}^{0}e$$

 $^{\circ}$ E. 2HgO \rightarrow 2Hg + O₂ 13. Causes the neutron-to-proton ratio in a nucleus to be lowered

A.
$$Ag^+ + Br^- \rightarrow AgBr$$

$$O_{B.6}^{14}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$

$$O_{D. + 15}^{30}P \rightarrow {}_{14}^{30}Si + {}_{1}^{0}e$$

E.
$$2HgO \rightarrow 2Hg + O_2$$

E. $2HgO \rightarrow 2Hg + O_2$ 14. Is the activation energy of the reverse reaction

$$\circ$$
 $_{-}$

15. Is the enthalpy change of the forward reaction

- [©] А.
- О В.
- ° c
- O D.
- ^О Е.
- **16.** Represents energy of the activated complex

- O A.
- О В.
- \circ
- O D.
- 0 _
- **17.** Holds a sample of barium iodide, Bal₂, together
- A. Hydrogen bonding
- B. Ionic bonding
- C. Metallic bonding

D. Nonpolar covalent bonding
E. Polar covalent bonding 18. Allows solids to conduct electricity
A. Hydrogen bonding
B. Ionic bonding
C. Metallic bonding
D. Nonpolar covalent bonding
E. Polar covalent bonding 19. Attracts atoms of hydrogen to each other in an H₂ molecule
A. Hydrogen bonding
B. Ionic bonding
C. Metallic bonding
D. Nonpolar covalent bonding
 E. Polar covalent bonding 20. Responsible for relatively low vapor pressure of water
A. Hydrogen bonding
B. Ionic bonding
C. Metallic bonding
D. Nonpolar covalent bonding
E. Polar covalent bonding21. Gives off a purplish vapor as it sublimes
A. Iron(III) chloride, FeCl³(s)
B. lodine, l₂(s)
C. Sodium hydroxide, NaOH(s)
D. Sucrose, C ₁₂ H ₂₂ O ₁₁ (s)
E. Graphite, C(s) 22. Can conduct electricity in the solid state
A. Iron(III) chloride, FeCl³(s)
B. lodine, l₂(s)
C. Sodium hydroxide, NaOH(s)
D. Sucrose, C ₁₂ H ₂₂ O ₁₁ (s)
E. Graphite, C(s) 23. Its dissolution in water is highly exothermic

U	A. Iron(III) chloride, FeCl³(s)
0	B. Iodine, $I_2(s)$
0	C. Sodium hydroxide, NaOH(s)
0	D. Sucrose, $C_{12}H_{22}O_{11}(s)$
0	E. Graphite, C(s)
39?	What is the number of protons and neutrons in an atom with mass number 89 and atomic number
0	A. 50 protons and 50 neutrons
0	B. 50 protons and 39 neutrons
0	C. 39 protons and 89 neutrons
0	D. 39 protons and 50 neutrons
Wh	E. 39 protons and 39 neutrons $C_4H_{10}(g) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$ en the above equation is balanced using the lowest whole-number terms, the coefficient of CO_2 is
0	A. 2
0	B. 4
0	C. 8
0	D. 10
	E. 13 Which of the following is closest in mass to a proton?
0	A. Alpha particle
0	B. Positron
0	C. Neutron
0	D. Electron
27. HCI	E. Hydrogen molecule What is the approximate percentage composition by mass of the element oxygen in the compound O_4 ?
0	A. 16%
0	B. 32%
0	C. 50%
0	D. 64%
	E. 75% If two atoms that differ in electronegativity combine by chemical reaction and share electrons, the d that joins them will be

O	A. metallic
0	B. ionic
0	C. a hydrogen bond
0	D. nonpolar covalent
29. tran	E. polar covalent When the temperature of a 20-gram sample of water is increased from 10°C to 30°C, the heat sferred to the water is
0	A. 600 calories
0	B. 400 calories
0	C. 200 calories
0	D. 30 calories
_	E. 20 calories What is the oxidation state of chromium, Cr, in the compound potassium dichromate, K ₂ Cr ₂ O ₇ ?
0	A. 1
0	B. 2
0	C. 3
0	D. 6
0	E. 12
0	An aqueous solution with pH 5 at 25°C has a hydroxide ion (OH-) concentration of A. 1 10-11 molar
0	
0	B. 1 10 ⁻⁹ molar
0	C. 1 10 ⁻⁷ molar D. 1 10 ⁻⁵ molar
32. The	E. 1 10 $^{-3}$ molar $2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$ volume of water vapor required to produce 44.8 liters of oxygen by the above reaction is
0	A. 11.2 liters
0	B. 22.4 liters
0	C. 44.8 liters
0	D. 89.6 liters
0	E. 100.0 liters
	When 190 grams of MgCl ₂ are dissolved in water and the resulting solution is 500 milliliters in volume, at is the molar concentration of MgCl ₂ in the solution?
0	A. 2.0 M
0	B. 4.0 <i>M</i>

\cup	C. 8.0 <i>M</i>
0	D. 12.0 <i>M</i>
	E. 16.0 <i>M</i> When a fixed amount of gas has its Kelvin temperature doubled and its pressure doubled, the new ume of the gas is
0	A. four times greater than its original volume
0	B. twice its original volume
0	C. unchanged
0	D. one-half its original volume
app	E. one-fourth its original volume In 12.4 hours, a 100 gram sample of an element decays so that its mass is 25 grams. What is the proximate half-life of this radioactive substance?
0	A. 1.6 hours
0	B. 3.1 hours
0	C. 6.2 hours
0	D. 24.8 hours
0	E. 49.6 hours
36.	In the equation Q $\rightarrow \frac{^4\text{He}}{^2\text{He}} + \frac{^{216}}{^{85}}\text{At}$, the species represented by Q is
0	A. 220 Fr
0	B. 83Bi
0	C. 220 At
0	D. 83Fr
0	E. 216 Bi
	A compound with a molecular weight of 56 amu has an empirical formula of CH ₂ . What is its moleculal nula?
0	A. C_2H_2
0	B. C ₂ H ₄
0	C. C₄H₅
0	D. C ₄ H ₁₀
38.	E. C ₆ H ₁₂ The change in heat energy for a reaction is best expressed as a change in
0	A. enthalpy
0	B. absolute temperature
0	C. specific heat

\cup	D. entropy
Whe	E. kinetic energyNF ₃ (g) +HF(g) +NO(g) +NO ₂ (g) en the equation for the reaction above is balanced, how many moles of NF ₃ would be required to react apletely with 6 moles of H ₂ O?
0	A. 0.5 mole
0	B. 1 mole
0	C. 2 moles
0	D. 3 moles
	E. 4 moles Which characteristic is associated with bases?
0	A. React with metal to produce hydrogen gas
0	B. Donate an unshared electron pair
0	C. Always contain the hydroxide ion in their structure
0	D. Taste sour
poir	E. Formed by the reaction of a nonmetal oxide and water An element has the following properties: shiny, brittle, poor electrical conductivity, and high melting it. This element can be best classified as a(n)
0	A. alkali metal
0	B. halogen
0	C. metalloid
0	D. transition metal
I. H ₂	E. noble gas Which of the following forward processes produces a decrease in entropy? $O(g) \rightarrow H_2O(I)$ $e^{2+}(aq) + S^{2-}(aq) \rightarrow FeS(s)$
	$2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$
0	A. I only
0	B. III only
0	C. I and II only
0	D. II and III only
	E. I, II, and III Which of the following will raise the boiling point of a sample of water?
0	A. Heat the water
0	B. Mix gasoline into the water
0	C. Bring the water sample to a higher altitude

O	D. Place the water sample on a magnetic stirrer
	E. Dissolve table sugar into the water Elements H and J lie in the same period. If the atoms of H are smaller than the atoms of J, then apared to atoms of J, atoms of H are most likely to
0	A. exist in a greater number of isotopes
0	B. exist in a lesser number of isotopes
0	C. exist in a greater number of oxidation states
0	D. have a greater positive charge in their nuclei
Wh	E. have a lesser positive charge in their nuclei $Al(s) +O_2(g) \rightarrowAl_2O_3(s)$ en the equation representing the reaction shown above is completed and balanced and all coefficients reduced to lowest whole-number terms, the coefficient of $O_2(g)$ is
0	A. 1
0	B. 2
0	C. 3
0	D. 4
் 46.	E. 6 Which of the following solids has a brilliant blue color?
0	A. Ca(OH) ₂
0	B. KCI
0	C. NaBr
0	D. Fe ₂ O ₃
0	E. CuSO₄