In the figure below, AB and GE are parallel. Triangle ACD is isosceles with the lengths of CA and CD equal. The measures of angles FDE and GDH are 60° and 65° respectively. What is the measure of angle CAB?

- A) 55°
- B) 6°
- C) 10°
- D) 15°
- E) 5°
- 2. If a, b and y are positive real numbers with such that none of them is equal to 1 and b

 $^{2a+6} = y^2$, which of these must be true?

- A) $y = b^{a+3}$
- B) 2a + 6 = 2
- C) b = y
- D) b = 2
- E) b(2a + 6) = 2y
- 3. What is true about the graph of function f defined by

$$f(x) = 4 + ||x| - 3|$$

- A) (I) only
- B) (II) only
- C) (III) only
- D) (I) and (II) only
- E) (I) and (III) only
- 8. If the perimeter of a regular hexagon is equal to 6 a, then the area of this hexagon if given by
 - A) 6 a²
 - B) 3 a²
 - C) $0.5 \sqrt{3} a^2$
 - D) √3 a²
 - E) $1.5 \sqrt{3} a^2$
- 9. AB is a diameter to the circle in the figure below and point C is on the circle. The measure of the diameter is 10 units and side AC has a length of 5 units. Find the measure of angle CBA

www.analyzemath.com

- A) 28
- B) 30
- C) 40
- D) 45
- E) 43

10. For what value of positive k does the equation have one solution only?

$$(x + k) x = -4$$

- A) 1
- B) 3/2
- C) 3
- D) 4
- E) 5
- 11. The average of the roots of a quadratic equation is equal to 3 and the difference of the roots is equal to 2. Which of these could be the equation?
 - A) $x^2 5x + 6 = 0$
 - B) $x^2 + 5x + 6 = 0$
 - $C) x^2 6x + 8 = 0$
 - D) $x^2 + 6x + 8 = 0$
 - E) $x^2 6x + 6 = 0$
- 12. If points M, B(2, 6) and C(4, 8) are such that MBC is a right triangle with hypotenuse BC, then the 3 points M, B and C are on a circle of radius
 - A) $2\sqrt{2}$
 - B) √2
 - C) 2
 - D) 4
 - E) 8
- 13. The volume of a rectangular solid is equal to 1000 m³. If the length, width and height are increased by 50%, the volume of the new rectangular solid is equal to

- A) 3375 m³
- B) 3500 m³
- C) 1500 m³
- D) 5000 m³
- E) 50000 m³
- 14. In the figure below angle ADE is right and BC and DE are parallel. The length of AC is 5 and the length of BC is 4. Find tan(angle CED).

- A) 5/4
- B) 4/5
- C) 4/3
- D) 1
- E) 3/4
- 15. What are the coordinates of the center of the circle that is entirely in quadrant II and is tangent to the lines y = 8, y = 2 and x = -2?
 - A) (-2, 8)
 - B) (-5, 2)
 - C) (-2, 2)
 - D) (-5, 5)
 - E) (-5, 8)

16. In the figure below BC is parallel to DE. The length of side AC is x and the length of side CE is 4x. What is the area of triangle ADE if the area of ABC is 100 cm²?

- A) 2500 cm²
- B) 1600 cm²
- C) 900 cm²
- D) 500 cm²
- E) 600 cm²?

17. In the figure below is shown a right triangle ABC. What is the volume of the cone obtained by rotating the triangle about the side AB?

A)	601	П

18. If 3(x + y) = 27 and x and y are positive integers, which of these cannot be the value of x / y?

B) 8

19. $[\cos(x)\sin(2x) - 2\sin x]/[\sin^2 x\cos(x)] =$

- A) $2 \cot(x)$
- B) $2 \tan(x)$
- C) 2 tan(x)
- $D) 2 \cot(x)$
- $E) \cot(x)$

20. Find the smallest value of a positive integer x such that $x^2 + 4$ is divisible by 25.

- A) 4
- B) 7
- C) 6
- D) 11
- E) 8

21. Find the value of canstant a such that x = 1 is a solution to the equation

$$a\sqrt{(x + 3)} - 4a \mid 2x - 1 \mid = 4$$

A)	-	2
----	---	---

22. m and n are positive integers such that m > n and $m^{2n} = 46656$. Find m.

23. The root of an equation of the form f(x) = 2 is x = 5. The solution of the equation defined by f(-2x + 1) = 2 is equal to

24. For what value of b will the system of equations 2x + 5y = 3 and 5x + by = 14 have no solution?

25. Find the real numbers a and b such that 3 a - b i = (2 - i)(4 + i) where $i = \sqrt{-1}$.

A)
$$a = -3$$
, $b = -2$

B)
$$a = -3$$
, $b = 2$

C)
$$a = 3$$
, $b = 2$

D)
$$a = 2$$
, $b = 4$

E)
$$a = 8$$
, $b = -1$

- 26. A dealer increased the price of an item by 20%, then increased the price of the same item by 30%. If x is the original price, what is the price after the two increases?
 - A) 1.5 x
 - B) 1.56 x
 - C) x + 0.5
 - D) x + 0.56
 - E) x + 6
- 27. Two dice are thrown. What is the probability that the sum of the two numbers obtained is greater than 10?
 - A) 1/12
 - B) 1/36
 - C) 1/6
 - D) 1/4
 - E) 1/2
- 28. If x and y are two real numbers such that 3x + 2y = 5 and 5x + 4y = 9, then 4x + 3y =
 - A) 0
 - B) 2
 - C) 5
 - D) 6
 - E) 7
- 29. The solution set of the inequality |2x 4| > x + 1 is given by the interval
 - A) (5, + infinity)
 - B) (-infinity, -1)

```
C) (-infinity, 1) U (5, +infinity)
```

- 30. If m and n are positive integers are such that m / n = 2 / 3, which of these values <u>cannot</u> be values of m and n?
 - A) m = 12 and n = 18
 - B) m = 60 and n = 90
 - C) m = 34 and n = 51
 - D) m = 7 and n = 21
 - E) m = 102 and n = 153
- 31. If 35 is the median of the data set including 21, 7, 45, 33, 62 and x, then x =
 - A) 3
 - B) 14
 - C) 37
 - D) 33
 - E) 48