Downloaded from www.studiestoday.com

CLASS – XI CHEMISTRY THERMODYNAMICS ASSIGNMENT NO. 8

- Q1. Define the following: (a) System (b) Surroundings (c) Boundary
- Q2. Explain the following types of system with e.g. (a) Open system (b) Closed system (c) Isolated system
- Q3. Why internal energy is a state function but work is not?
- Q4. What is an adiabatic process? Give example.
- Q5. What is first Law of thermodynamics? Give its mathematical representations.
- Q6. Under what condition ΔH becomes equal to ΔU ?
- Q7. Derive the relation of work done for a reversible process at constant temperature.
- Q8. List the important sign conventions for heat & work.
- Q9. Starting with the thermodynamics relationship H=U+PV, derive the following relationship $\Delta H=\Delta U+\Delta HgRT$
- Q10. What are extensive & intensive properties? Give two egs of each.
- Q11. Derive the relation $C_p C_v = R$
- Q12. Define the following: (a) Standard enthalpy of reactions (b) Standard enthalpy of fusion, Vaporization, sublimation (c) Standard enthalpy of formation.
- Q13. State Hess's law of constant Hear summation: Calculate the enthalpy of formation of CO from the following data:-
- (i) $C + O_2 \rightarrow CO_2 \quad \Delta H = -393.5 \text{ kJ/mole}$
- (ii) $CO + \frac{1}{2} O_2 \rightarrow CO_2 \qquad \Delta H = -283.0 \text{ kJ/mole}$
- Q14. Illustrate the following with suitable examples:-
- (a) Enthalpy atomization (ii) Enthalpy of combustion (iii) Bond Energy (iv) Enthalpy of solution (v) Lattice enthalpy
- Q15. Define the term entropy. How does $T\Delta S$ determine the spontaneity of a process?
- Q16. How is Gibbs free energy related to enthalpy, entropy & temperature of a system? How is this used in determining the spontaneity of a process?
- Q17. Cal w, q & ΔU when 0.75 mole of an ideal gas expands isothermally & reversibly at 27^{0} C from volume of 15L to 25 L.
- Q18. Calculate the standard internal energy change for the reaction at 25°C:-

$$C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l)$$

 $\Delta H \text{ for } C_2H_4(g) = 52.30 \text{ kJ/mole, } CO_2 = -393.5 \text{ kJ/mole}$
 $H_2O = -286 \text{ kJ/mole } R = 8.314 \text{ J/K/mole.}$

- Q19. Calculate the enthalpy of combustion of ethylene to form $CO_2\&H_2O(g)$ at 298K & 1 atm pressure. The enthalpies of formation of CO_2 , H_2O & C_2H_4 are -3937, -241.8, +52.3 kJ/mole respectively.
- Q20. Calculate the bond enthalpy of HCl. Given that the bond enthalpies of H2 & Cl2 are 430 kJ/mole & 242 kJ/mole respectively & ΔHf for HCl is -91 kJ/mole.
- Q21. Find the entropy change involved in conversion of 1 mole of solid ice at 273K to liquid water at the same temperature (latent heat if fusion = 6025J/mole).
- Q22. Calculate the equilibrium constant K for the reaction at 400K.

$$2NOCl~(g) \qquad \qquad 2~No.(g) + Cl_2~(g)$$
 Given that $\Delta_r H^0 = 80~K~J/mole \qquad \Delta_r S^0 = 120~K~J/mole$ at 400 K

- Q23. The standard free energy change for a reaction is -212.3 kJ/mole. If the standard enthalpy change is -216.7 kJ/mole. Calculate the standard entropy change at 298K.
- Q24. $\Delta H \& \Delta S$ of a chemical reaction are 40.63 kJ/mole & 108.8 J/K/mole respectively. Find free energy change at 27°C & also predict the feasibility of the reaction.

Downloaded from www.studiestoday.com